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PURPOSE. Within the healthy population there is a large variation in the ability to
perform smooth pursuit eye movements. Our purpose was to investigate the genetic and
physiological bases for this variation.

METHODS. We carried out a whole-genome association study, recording smooth pursuit
movements for 1040 healthy volunteers by infrared oculography. The primary phenotypic
measure was root mean square error (RMSE) of eye position relative to target position.
Secondary measures were pursuit gain, frequency of catch-up saccades, and frequency of
anticipatory saccades. Ten percent of participants, chosen randomly, were tested twice,
giving estimates of test-retest reliability.

RESULTS. No significant association was found with three genes previously identified
as candidate genes for variation in smooth pursuit: DRD3, COMT, NRG1. A strong
association (P = 3.55 × 10−11) was found between RMSE and chromosomal region
1q42.2. The most strongly associated marker (rs701232) lies in an intron of KCNK1,
which encodes a two-pore-domain potassium ion channel TWIK-1 (or K2P1) that
affects cell excitability. Each additional copy of the A allele decreased RMSE by 0.29
standard deviation. When a psychophysical test of visually perceived motion was used
as a covariate in the regression analysis, the association with rs701232 did not weaken
(P = 5.38 × 10−12).

CONCLUSIONS. Variation in the sequence or the expression of the pH-dependent ion
channel TWIK-1 is a likely source of variance in smooth pursuit. The variance
associated with TWIK-1 appears not to arise from sensory mechanisms, because the
use of a perceptual covariate left the association intact.
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We share with our primate relatives the capacity to track
a smoothly moving object with our gaze.1 This phylo-

genetically recent ability serves to stabilize the object on the
fovea—a retinal region that is rich in cones and is coupled
to a disproportionately large area of the visual cortex.

Although the neural pathways that underlie smooth
pursuit overlap with those that control saccades and
although the two systems necessarily collaborate during
tracking,2–4 there is evidence for some functional indepen-
dence between these two types of eye movement. Whereas
saccades are primarily driven by position error, smooth-
pursuit movements are driven by sensory signals that repre-
sent stimulus velocity,5,6 signals that possibly derive from
low-level motion detectors in the initial stage and from high-
level motion systems once tracking is on target.7 Barbi-
turate drugs have a disproportionate effect on smooth
pursuit: under the influence of barbiturates, tracking tasks

are performed by a succession of saccades.5 Conversely,
in some cases of idiopathic ocular motor apraxia, smooth
pursuit movements may survive when horizontal saccadic
movements are lost.8,9

Smooth pursuit eye movements are impaired, often
disproportionately, in several other neurological and psychi-
atric conditions, including episodic ataxia type 4, Joubert
syndrome, Alzheimer disease, and posterior cortical atro-
phy.10–13 The impairment of smooth pursuit in cases of
psychosis is long established,14–17 although, in a healthy
German population, Coors et al.18 found no consistent
relationship between polygenic risk scores for schizophre-
nia and either the gain of smooth pursuit or the
number of saccades made while the participant was
tracking.

Within the non-clinical population, there are, however,
large individual differences in smooth pursuit perfor-
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mance,19,20 and twin studies suggest that the accuracy of
smooth pursuit is substantially heritable.21,22 Two early
candidate-gene studies were prompted by the dopaminergic
theory of schizophrenia. Thus Rybakowski and colleagues23

reported an association with the Ser-9-Gly polymorphism
of the DRD3 gene, encoding a dopaminergic receptor:
The Ser-Ser phenotype was more likely to be accompa-
nied by impaired pursuit, both in healthy controls and
in patients with schizophrenia. Similarly, Thaker et al.24

reported that the Val-158-Met polymorphism of COMT was
associated with differences in predictive pursuit gain in
healthy individuals. Another gene of interest—again on
account of its being a candidate gene for schizophrenia—
has been NRG1, which encodes neuregulin-1. For a large
sample of male military conscripts, Smyrnis and colleagues25

reported an association between root-mean-square error in
smooth pursuit and the single nucleotide polymorphism
(SNP) rs6994992 (SNP8NRG243177) in the promoter region
of NRG1. However, negative results for this and other NRG1
polymorphisms were reported for a Korean population26

and for an Icelandic population.27 In a whole-genome study
of a mixed cohort of healthy controls and patients with
psychotic conditions, Lencer and colleagues28 found no SNP
with genome-wide significance for smooth pursuit gain but
reported an association of IPO8 (chromosome 12p11.21)
with initial pursuit acceleration.

We describe here a whole-genome association study
of smooth pursuit in healthy young adults. Many whole-
genome association studies offer no formal measure of
the test-retest reliability of the phenotypic measurements.
Any day-to-day variation in participants or in the measure-
ment procedures will reduce reliability, and this will set
an upper limit to any genomic associations that can be
obtained.29 In the present study, therefore, we designed
the phenotypic measurements to achieve high test-retest
reliability, and we report explicit values. Our study did
not confirm associations reported in the candidate-gene
literature (see above), but individual variations in accu-
racy of smooth pursuit were strongly associated with mark-
ers within the gene KCNK1, which encodes the two-
pore-domain potassium channel known as TWIK-1 or
K2P1.30–32

METHODS

Participants

Oculomotor measures were recorded as part of the
PERGENIC project, in which we tested a population of 1058
young adults (413 male) on a 2.5-hour battery of optomet-
ric, perceptual and oculomotor tests.33–35 Participants were
recruited from the Cambridge area by advertisements within
the University and online, and a large proportion were
students at the University of Cambridge. Their age range was
16–40, with a mean age of 22.14 (standard deviation [SD]
= 4.09). To reduce population stratification in our sample,
participants were all of European descent, as established by
the reported nationality of their four grandparents and by
direct checks on genotypes. To establish test-retest reliabil-
ities, we asked 10% of participants, randomly selected, to
perform the test battery on a second occasion.

The study received approval from the Cambridge
Psychology Research Ethics Committee. All participants gave
written consent after having been given information about
the study.

Phenotypic Measures

Measurements of smooth pursuit were available for 1040
participants and for 103 of those participants tested twice.
For the latter group, in all but three cases, the two testing
sessions were at least one week apart: the range of inter-
vals was 103 days and the median was 18.8 days (SD =
23.3 days).

Eye movements and head movements were recorded
using the head-mounted JAZZ-novo system (Ober Consult-
ing, Poznan, Poland), which samples at 1 kHz and records
horizontal and vertical rotations of the eye using infrared
oculography. The output signal represents the average of
the two eyes. The noise level (along the horizontal axis) is
equivalent to six minutes of visual angle. A chin-rest was
used to minimize head movements and to maintain a view-
ing distance of 60 cm.

Stimuli were presented on a GDM-F520 CRT monitor
(Sony, Tokyo, Japan) controlled by a VSG 2/5 graphics card
(Cambridge Research Systems, Rochester, UK). The monitor
had a refresh rate of 100 Hz and was synchronized with the
JAZZ-novo by means of the independent timer present on
the VSG card. The synchronization, tested empirically, was
accurate to 1 ms.

The target was a white disk (diameter of 0.3°; luminance
of 75 cd/m2) and was presented on a gray background
(25 cd/m2). A smooth-pursuit trial began with the target
located centrally for a duration chosen randomly from the
range 500 to 1500 ms. The target then moved horizontally
(to the left or to the right) at a constant speed (10°/s, 20°/s,
or 30°/s) until it reached an eccentricity of 15°, whereupon
it changed direction and moved to the opposite side of the
screen, continuing this triangular waveform for 5.5 cycles.
There were eight trials for each target speed. Participants
were instructed to fixate the target at all times.

To maximize the reliability of the measurements, a spatial
calibration was performed at regular intervals during each
recording session: the participant was asked to fixate station-
ary targets (duration 1000 ms) at 15°, 10°, 5°, 0°, −5°,
−10°, and −15° relative to the central fixation point. The
gain and offset were calculated for each calibration using
linear regression of the oculographic signal against the target
values; and these factors were applied to the eye-movement
data recorded following the calibration.

In the analysis of the oculomotor data, a saccade was
detected if the eye acceleration exceeded a relative threshold
value (six times the median value of the standard deviation
of the acceleration signal during the first 80 ms of all trials for
a particular participant). As the primary, global measure of
tracking performance, we calculated the root mean square
error (RMSE) of eye position relative to target position in
degrees of visual angle. The complete pursuit signal was
used excluding blinks. We also extracted three secondary
measures: Pursuit gain, defined as eye velocity divided by
target velocity after removal of saccades and blinks, and
excluding regions where the target changed direction (i.e.
regions where the eccentricity of the target was >10°);
Frequency of catch-up saccades (defined as saccades in the
direction of pursuit that decreased positional error); and
Frequency of anticipatory saccades (defined as saccades in
the pursuit direction that increased positional error and were
>1.5° in amplitude36). Results for saccades are expressed
as average number per second. The secondary phenotypic
measures are not, of course, independent of the primary
measure, RMSE.
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Genotyping

DNA was collected from saliva samples taken during
the participants’ visits, using Oragene OG-500 kits (DNA
Genotek Inc, Ottawa, Canada). DNA extraction and microar-
ray processing were performed by Cambridge Genomic
Services (University of Cambridge, UK) according to manu-
facturers’ protocols. A total of 1008 individuals were geno-
typed at 733,202 SNPs on the Illumina HumanOmniExpress
BeadChip. Genotype calling was by custom clustering using
the algorithm GenCall implemented in Illumina GenomeStu-
dio. Twenty-eight individuals were excluded from the anal-
ysis, on the basis of genetic and phenotypic quality control.
Criteria for exclusion were as follows: Inadequate eye-
movement data (eight individuals), genotypic sex anomalies
(three individuals), low (<0.97) genotyping call rate (one
individual), population outliers (one individual) and dupli-
cate or related samples (15 individuals). This left 980 indi-
viduals in the analysis (599 female). Quality control was also
conducted on individual SNPs. Markers with >2% missing
genotypes (12706 SNPs) and markers with <1% minor allele
frequency (77,738 SNPs) were excluded, leaving 642,758
SNPs in the analysis.

Statistical Analysis

Association analysis was conducted using PLINK (v. 1.07),37

assuming an additive genetic effect. To control for any resid-
ual population stratification resulting from multiple genetic
subgroups or genetic admixture in our population, we used
EIGENSOFT (v. 4.2)38 to extract the top three principal
components (PCAs) of genetic variation in the sample. The
three PCA axes were entered together with sex as covari-
ates in the regression model. At any suggestive (p < 1 ×
10−5) loci, 2.5Mb regions centered on these locations were
defined for imputation. These regions were imputed using
IMPUTE2 (v. 2.3.0)39,40 with the phased haplotypes of the
1000 genomes project.41 Association analysis of these high-
density regions was then carried out on the genotype prob-
abilities using the dosage association feature of PLINK, with
the four covariates added to the regression model as before.

We also used a permutation test to verify potential asso-
ciations.42 This method generates empirically derived null
distributions and accounts for multiple testing across the
genome. It is particularly useful for testing associations
where assumptions of parametric tests may be violated.
Phenotypic scores were randomly permuted within the
cohort to provide a new set of genotype-phenotype pair-
ings sampled under the null hypothesis. Linear regressions
were then calculated at each SNP for each permutation. To
account for residual stratification, we allowed permutation
of phenotypic values only within population groups; these
were defined using PLINK’s clustering method, which uses
complete linkage agglomerative clustering, based on pair-
wise identity-by-state distance.37 This method grouped our
cohort into 11 clusters. A P value was calculated for a given
SNP as the probability that the P value for that SNP in the
original analysis was larger than the P value for any SNP
over 10,000 permutations.

Finally, regions corresponding to the association signal
were defined. These regions are blocks that are in linkage
disequilibrium with the most strongly associated marker and
contain other “clumped” SNPs that are associated with the
phenotype below a specified P value. The range therefore
defines the region likely to contain the gene of interest,

where the causal polymorphism associated with the pheno-
type lies. We used PLINK’s clumping function to define
the regions, using a significance threshold of index SNPs
of 0.00001, a significance threshold for clumped SNPs of
0.01, an LD threshold for clumping of 0.1 and a physical
distance threshold for clumping of 1250Kb. For all signifi-
cant or suggestive SNPs, cluster plots were inspected manu-
ally and genotype distributions were evaluated for deviation
from Hardy-Weinberg equilibrium. All genomic references
are based on NCBI Build 37.

Using Performance on a Phenotypic Perceptual
Task as a Covariate

For the participants in our present cohort, we hold measure-
ments of visual thresholds for detecting coherent motion in
an array of moving dots43: Thresholds were expressed as the
proportion of dots that must be in coherent motion for the
predominant direction of motion to be correctly reported.
In the present GWAS of ocular tracking, we used partici-
pants’ performance on the coherent motion test as a covari-
ate, to test to whether the phenotypic variance associated
with KCNK1 was of perceptual origin.

RESULTS

Phenotypic Measures

Within the cohort there were substantial individual differ-
ences in smooth-pursuit ability: Figure 1 shows examples
of records from participants with very low and very high
scores for the primary phenotypic measure, RMSE. Distri-
butions for our phenotypic measures can be found in the
study by Bargary et al.20 High test-retest reliabilities were
found for RMSE and for the secondary measures—pursuit
gain, anticipatory saccades, catch-up saccades. These values
are shown in bold in Table 1. Also shown in Table 1 are the
correlations between the phenotypic measures, which are
in the expected directions. The values for test-retest relia-
bility are based on the 10% of participants who were tested
twice (N = 103), and the correlations between measures are
based on the full cohort who completed the phenotypic tests
(N = 1040). We give Spearman rank correlations, since the
measures are not normally distributed. The values shown
here are extracted from Tables 1 and 3 of Bargary et al.20

Genetic Associations

Our array included three SNPs, rs6280 (DRD3), rs4680
(COMT) and rs6994992 (NRG1), that have been associated
with smooth-pursuit performance in candidate-gene stud-
ies of healthy participants (see Introduction). We found no
significant association between RMSE and any of these SNPs:
for rs6280 the unadjusted P value was 0.067, for rs4680 it
was 0.27, and for rs6994992 it was 0.108. These values were
0.121, 0.258 and 0.125, respectively, when performance on
the perceptual coherent motion test was used as a covariate.

At the suggestion of a reviewer, we also asked whether
our measure of smooth pursuit RMSE was significantly
associated with any of the SNPs that reached genome-
wide significance in the COGENT study of general cogni-
tive ability.44 Only six of the 122 significant COGENT SNPs
were directly available on our Illumina BeadChip array
but we were able to impute all but two of the remain-
der (17:44366572:A:G and 17:44364573:G:A were not avail-
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FIGURE 1. Examples of eye-movement records from participants
who exhibited very good (above) and very poor (below) tracking
performance in the smooth-pursuit task. The broken line represents
the position of the target, which moves horizontally according to a
triangular temporal waveform. The participant for whom a sample
record is shown in the upper panel achieved an overall RMSE of
0.507 degrees of visual angle. The corresponding value was 5.98
for the participant whose sample is shown in the lower panel.

able). An association run in PLINK (with sex and the first
three genetic PCAs as covariates) showed no significant asso-
ciations (P > 0.099).

A strong genetic association was found between RMSE
for smooth pursuit and a locus in the chromosomal region
1q42.2 that includes the gene KCNK1 (Fig. 2). The most
strongly associated genotyped SNP was rs701232 (P = 3.55
× 10−11) and the most strongly associated imputed SNP was
rs701233 (P = 1.06 × 10−10). Both SNPs are located in the
first intron of KCNK1, within a cluster of transcription-factor

binding sites. The SNP rs701232 showed associations at the
1.7 × 10−5 and 8.0 × 10−5 levels with number of antici-
patory saccades and with pursuit gain, and these associ-
ations disappeared when RMSE was included as a covari-
ate (P = 0.47 for anticipatory saccades; P = 0.48 for gain).
Interestingly, there was not a strong relationship with the
frequency of catch-up saccades (P = 0.023). Table 2 lists all
genotyped and imputed SNPs that lie on 1q42.2 and that
have P values smaller than 5 × 10−7 for an association with
RMSE.

The quantile-quantile plot for the analysis (Fig. 3A) and
the value of the genomic inflation factor (λ = 1.00) showed
no evidence of increased signals due to technical error or
to population stratification. Post-association quality control
showed no evidence of departure from Hardy-Weinberg
equilibrium (Table 2) and inspection of the signal intensity
plots shows that the SNPs were well called (Fig 3B).

The minor allele frequency for the most strongly associ-
ated SNP, rs701232, was 0.49 in our sample, which is similar
to the values of 0.46 recorded for the 1000 genome project
and of 0.49 recorded for the GnomAD database. Each addi-
tional copy of the minority A allele at this position was asso-
ciated with a decrease in RMSE equivalent to 0.29 standard
deviation. The power to detect an effect of this magnitude
was 95% (Fig. 3C).

Since the phenotypic data are not normally distributed,20

we also conducted the regression analysis using rank orders:
The strongest signal was again at rs701232 (P = 7.74 ×
10−10). Using the permutation method, which derives signif-
icance values without making assumptions about the distri-
bution of the dataset, we again obtained the strongest signal
at rs701232, with a genome-wide multiply-corrected P value
of 0.0039.

Using Coherent Motion Performance as a
Covariate

There are moderate, but highly significant, phenotypic corre-
lations between performance on our coherent motion test43

and the present oculomotor tracking measures. The values
of Spearman’s rho for the correlations of motion sensitiv-
ity with pursuit RMSE, with pursuit gain, with frequency
of anticipatory saccades and with frequency of catch-up
saccades were −0.28, 0.24, −0.22, and 0.14, respectively
(P << 0.001 in all cases). Thus approximately 8% of the
phenotypic variance is common to motion thresholds and
to the RMSE of ocular tracking.

However, the marker rs701232—strongly associated with
RMSE in oculomotor tracking—shows no sign of association
with psychophysical sensitivity for coherent motion (uncor-
rected P = 0.70). We repeated our association analysis for
oculomotor tracking, adding coherent motion sensitivity to
the covariates previously used (sex and the first three PCAs

TABLE 1. Test-Retest Reliabilities (N = 103) of the Ocular Motor Measures (in Bold) and the Correlations of the Measures With Each Other
for the Full Cohort (N = 1040)

RMSE Pursuit Gain Catch-Up Saccades Anticipatory Saccades

RMSE 0.79 −0.75 −0.41 0.71
Pursuit gain 0.88 0.28 −0.76
Catch-up saccades 0.78 −0.44
Anticipatory saccades 0.83

Values given are Spearman’s rank-order correlation coefficients.
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FIGURE 2. Manhattan plot of the association region. Measured SNPs are identified by outline diamonds, and imputed SNPs are without
outlines. Saturation indicates imputation quality. Recombination rate is plotted with solid blue lines. The vertical blue dashed lines indicate
the region identified by clustering, in which the critical variant is likely to lie. The genomic context of the region is shown below. Vertical
rectangles indicate exons.

TABLE 2. Association Results for the SNPs With P < 5 × 10−7

SNP Location LD Allele 1 Allele 2 MAF HWE P Value β SE P Value

Genotyped
rs701232 233791469 1 A G 0.49 0.57 −0.53 0.08 3.55 × 10−11

Imputed

rs701233 233791651 0.973 A G 0.50 0.37 −0.52 0.08 1.24 × 10−10

rs12139277 233811896 0.267 A C 0.24 0.38 −0.51 0.09 2.73 × 10−8

rs2884332 233815886 0.264 T C 0.24 0.43 −0.50 0.09 6.36 × 10−7

rs143752646 233823693 0.228 A C 0.26 0.28 −0.46 0.09 2.05 × 10−7

rs1039126 233827013 0.227 C T 0.26 0.28 −0.46 0.09 3.05 × 10−7

β, change in RMSE per additional minor allele; HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency; SE, standard error of β.
All SNPs are located on chromosome 1. Locations are GRCh37 coordinates. LD is the r2 linkage disequilibrium between each SNP and

rs701232. Allele 1 is the minor allele. All imputed SNPs have an IMPUTE2 quality score ≈ 1.

of the genetic variation in our sample). The association of
RMSE with rs701232 became somewhat stronger (P = −5.38
× 10−12) rather than weaker.

Sex Differences

Our phenotypic analysis showed large sex differences in
smooth-pursuit measures (see Table 2 of reference 20):
Females showed an 18% higher mean RMS error than did
males; their pursuit gain was lower by 4%; they made
30% fewer catch-up saccades (i.e., saccades that reduce the
positional error); and they made 18% more anticipatory
saccades (i.e., saccades that increase the positional error).
Anticipatory saccades are often considered to be predictive
and to be produced mistakenly in an attempt to improve
tracking.45

These large phenotypic differences prompted us to exam-
ine the genetic associations of KCNK1 separately for males
and females (see Fig. 4 for violin plots by genotype). The
association of rs701232 with RMSE remained very signifi-
cant within the female cohort alone (N = 599; β = −0.69;
P = 4.30 × 10−10), but in males the association was much
weaker (N = 388; β = −0.28; p = 0.010). A permutation
analysis showed that the effect size was significantly differ-
ent between males and females: Across 10,000 permutations
(where the full sample was split randomly into two cohorts
of 388 and 592 to match the numbers of males and females),
the probability that a difference in effect size was larger than
the observed one was 0.005. The difference was not due
to a difference in phenotypic reliabilities: None of the four
phenotypic measures of smooth pursuit exhibited a signifi-
cant sex difference in reliability within the 101 participants
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FIGURE 3. (A) Quantile-quantile plot of the P values resulting from the association test (black circles P < × 10−5; black line P > × 10−5).
The null distribution is illustrated with the red line. The 95% confidence intervals are shown in gray. (B) Cluster plot for the genotyped SNP
rs701232. Individuals included in the analysis are represented by circles, excluded individuals are represented by crosses. AA homozygous
genotypes are blue, AB heterozygous genotypes are cyan, and BB homozygous genotypes are red. (C) Power to detect associations with
P < 5 × 10−7. Effect size is the coefficient of determination (r2). The red line is for the case where the causal variant is in perfect LD (r2 = 1)
with a genotyped SNP. The dashed lines illustrate the effect of reduced LD between any genotyped SNP and the causal variant. Power was
calculated as follows: power = 1− FF (Fcrit|ν1,ν2,λ) where FF (� |ν1,ν2,λ) represents the cumulative distribution function of the noncentral
F distribution and Fcrit is the 100(1 − α) percentile from a central F distribution with ν1 and ν2 degrees of freedom and α is the α-level. λ

is the noncentrality parameter λ = [r2/(1 – r2)] ν2. ν1 was equal to 1, ν2 was equal to 977, and α was equal to 5 × 10−7. The effect size of
rs701232 is 0.043, and our power to detect an effect of this magnitude is 95%.

FIGURE 4. Distributions of RMSE by genotype. Violin plots with embedded box plots showing the distribution of pursuit RMSE by genotype
at rs701232 (A) for the full sample, (B) separately for males and females.

(61 female) who performed the measurements twice and
whose genetic data were included in our analysis.

DISCUSSION

Phenotypic Reliabilities

The strength of any association found in GWAS must
depend on the test-retest reliability of the phenotypic
measure, because some variance will always be either
within-individual or instrumental in its origin29: Ideally the

measure should wholly represent trait rather than state. Curi-
ously, the reliability of the phenotypic measure is seldom
stated in whole-genome studies of behavioral traits. In the
case of the present study, we believe that the high reliabili-
ties are the result of repeated calibration during the oculo-
motor testing of each participant.20

Genetic Association

It is perhaps the high reliabilities of our phenotypic
measures that allowed the emergence of a strong association
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between smooth-pursuit tracking performance and the gene
KCNK1 in chromosomal region 1q42.2. The size of the effect
is relatively large: 0.29 SD for each additional copy of the A
allele. Because we do not have a replication cohort and do
not have the resources to carry out further testing, the asso-
ciation must remain provisional.

However, KCNK1 encodes an ion channel and is a plau-
sible candidate gene for an effect on smooth pursuit. It is
widely expressed in the brain, both in neurons and in astro-
cytes. There are high levels of expression in the cerebel-
lar granular cell layer, in the thalamic reticular nucleus, in
the medial habenula and in the piriform cortex.46,47 In the
neocortex, it is expressed most highly in layers 2/3 of the
motor and frontal cortices.

The encoded protein, TWIK-1 or K2P1, is a two-pore-
domain potassium ion channel (“Tandem of P-domains in
a Weakly Inward rectifying K+ channel”).30,31 The chan-
nel itself is a dimer, assembled either from two units of
TWIK-1 or a combination of TWIK-1 and another member
of the two-pore-domain family, such as TREK-1, TASK-1, or
TASK-3.48,49 The TWIK-1/TREK-1 heterodimer is common
in astrocytes, where it mediates the K+ current respon-
sible for background passive conductance but also medi-
ates the release of glutamate from the cell when the
heterodimer is bound to the G-protein subunit GNG4 as a
result of activation of the heptahelical receptor, cannabinoid
receptor 1.50,51

Previous Associations of KCNK1 with Pathologies

An early linkage study of a Mennonite kindred found that
a form of episodic ataxia was associated with the 1q42.2
region containing KCNK152: Disorders of this type are char-
acterized by episodes of cerebellar dysfunction, and they
typically arise from an inherited defect of an ion chan-
nel. Sequencing of the exons of KCNK1 and adjacent splice
sites in this family did not reveal mutations but did not
rule out variants that could change the expression of the
gene. In two brothers with autism and mild intellectual
disability, Crepel and colleagues53 reported a 2 Mb dupli-
cation at 1q42.2: one breakpoint was within KCNK1 and
within the present association region, and the other break-
point was just upstream of DISC1. In a study of expres-
sion differences in monozygotic twins discordant for bipo-
lar disorder,54 KCNK1 showed consistent overexpression in
the affected twin. Conversely a meta-analysis by Mistry and
colleagues55 found that the expression of KCNK1 is reliably
down-regulated in the prefrontal cortices of patients with
schizophrenia. However, although 1q42.2 is a region that
has been linked with psychotic illness56,57 and although the
TWIK-1/TREK-1 heterodimer has been proposed as a target
for antidepressant drugs,58 KCNK1 is explicitly not among
the loci that have been associated with schizophrenia by
GWAS59,60: Indeed, in a 2014 GWAS,56 rs701232 had a thor-
oughly nonsignificant P value of 0.2832.

However, although KCNK1 is clearly not itself a candidate
gene for psychosis in clinical populations, we leave open the
possibility that it is a route by which biochemical changes
associated with psychosis can lead to alterations in ocular
tracking—for example, via activation of cannabinoid recep-
tor 1 (see above). In this context, we note the interesting
finding by Sami et al.61 that patients with early psychosis
who were heavy cannabis users did not exhibit the reduced
gain in smooth pursuit that was seen in comparable patients
who were not cannabis users.

The Site of Action of KCNK1

The introduction of a covariate in GWAS may throw light
on how a genetic polymorphism alters the phenotype. In
the present study, the use of an independent phenotypic
measure allowed us to constrain the probable site of action
of KCNK1.

Individual differences in ocular tracking could arise from
variation in the visual analysis of motion as well as from
variation at different levels of the oculomotor system.7,62–64

Correlations between psychophysical judgements and oculo-
motor precision suggest that some of the variance in track-
ing ability indeed has its origin within the perceptual system.
In a sample of 45 college students, Wilmer and Nakayama7

found that pre-saccadic pursuit acceleration correlated with
psychophysical estimates of the speed of “low-level” motion,
whereas the precision of post-saccadic pursuit correlated
with judgments of “high-level” motion. In a sample of 36
healthy observers, Price and Blum65 found that the precision
of perceptual judgements of motion direction was corre-
lated with the precision of ocular tracking. For patients
with schizophrenia, similar relationships have been found
between the gain of smooth pursuit and psychophysical
thresholds for detecting coherent motion64 and for discrim-
inating velocity.66

For our own large population of young, healthy adults,
phenotypic correlations of this kind are observed, and we
exploited them to test whether the variance due to KCNK1
is of perceptual origin. When we used as a covariate the
ability to detect coherent motion in random noise,43 the
association of smooth-pursuit RMSE with KCNK1 was not
weakened but instead slightly strengthened. This result
suggests that the variance associated with chromosomal
region 1q42.2 is unlikely to originate within the percep-
tual analysis of motion, but is more likely to originate
in executive or motor processes—or possibly in the use
of re-afferent information during the closed-loop phase of
pursuit.67 If the variance derived from sensory mechanisms,
we should have expected the association with rs701232 to
become weaker when coherent motion sensitivity was used
as a covariate. The subsidiary association with anticipatory
saccades (often considered predictive45), but not with catch-
up saccades, suggests a relatively central site for the action of
TWIK-1.

Sex Differences

Our study was not explicitly designed to study sex differ-
ences (to do so would require truly random sampling
of males and females from the total parent population—
something that is rarely achieved even in studies explic-
itly concerned with sex differences). In addition, in our
cohort of volunteer participants there were more females
than males, in the ratio 645:413. Thus it is conceivable that
a sampling difference accounts for the sex differences we
observe: our male and female participants may not have
been equated with respect to some critical, but unidentified,
factor.

However, our volunteers were drawn from a relatively
homogeneous population of young adults in the Cambridge
area (many of them were students from Cambridge Univer-
sity). Moreover, there is a further reason for placing these sex
differences on record. The expression of KCNK1 has been
reported to be sex-dependent in other systems. In endomy-
ocardial biopsies from patients with new-onset heart fail-
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ure, KCNK1 was overexpressed in males.68 In zone 3 of the
mouse liver, phenobarbital leads to the induction of TWIK-1
in males but not in females.69

TWIK-1 and pH

The ion channel TWIK-1 is pH dependent, and in a compli-
cated way: At a pH of 7.4 the channel is open and is selec-
tive for K+ ions, but a reduction to a pH of 6 leads to
the channel becoming less selective, so that an inflow of
Na+ opposes the outflow of K+ and the net flow of posi-
tive charges is reduced.70–72 Is it possible that variation in
pH, acting via TWIK-1, is the common pathway through
which several factors affect smooth pursuit eye movements?
We note the following: (i) Phenobarbital (but perhaps not
all barbiturates) has been reported to reduce intracellular
pH73; (ii) In post mortem brain tissue pH has been found
to be lower in female than in male brains74 (although see
reference 75); (iii) There are recurrent reports that pH is
reduced in the brains of patients with schizophrenia76; and
genes whose expression is associated with lowered pH are
over-represented among the genes that are differentially
expressed in schizophrenia and bipolar disorder.77 Each of
these observations would be open to discussion; but we note
the interesting possibility that variations in pH, acting via
TWIK-1, offer a route by which several factors could affect
smooth pursuit eye movements.

CONCLUSIONS

We find no association between the precision of ocular track-
ing and three traditional candidate genes, DRD3, COMT and
NRG1. Our results can be seen in the wider context of the
frequent failure of GWAS to confirm candidate-gene stud-
ies.78,79 None of the three candidates has in fact proved to
have a strong association with schizophrenia.80

Our study, however, does find a strong association of
smooth pursuit performance and markers within the gene
KCNK1, which encodes the two-pore-domain potassium
channel TWIK-1 or K2P1. The effect is a large one (0.29 SD
for each additional copy of the A allele). KCNK1 is rendered
a plausible candidate gene by the ion channel it encodes
and by the known pharmacology of the channel. Limita-
tions of our study are that our cohort is small by current
standards of GWAS and that we do not have a replication
cohort. Strengths of the study are the detailed phenotypic
measurements, the explicit estimates of test-retest reliability,
and the use of a perceptual covariate to narrow down the
route by which KCNK1 alters the phenotype.
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